Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 132.154
Filtrar
1.
Environ Monit Assess ; 196(5): 468, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38656463

RESUMEN

In this study, four different plant species, namely Artocarpus heterophyllus, Mangifera indica, Psidium guajava, and Swietenia mahagoni, were selected from seven different locations to assess the feasibility of using them as a cost-effective alternative for biomonitoring air quality. Atmospheric coarse particulate matter (PM10), soil samples, and leaf samples were collected from residential, industrial, and traffic-congested sites located in the greater Dhaka region. The heavy metal concentrations (Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn) in the leaves of the different species, PM10, and soil samples were analyzed. The highest Pb (718 ng/m3) and Zn (15,956 ng/m3) concentrations were found in PM10 of Kodomtoli which is an industrial area. On the other hand, the highest Fe (6,152 ng/m3) and Ni (61.1 ng/m3) concentrations were recorded in the PM10 of Gabtoli, a heavy-traffic area. A significant positive correlation (r = 0.74; p < 0.01) between Pb content in plant leaves and PM fraction was found which indicated that atmospheric PM-bound Pb may contribute to the uptake of Pb by plant leaves. The analysis of the enrichment factor (EF) revealed that soils were contaminated with Cd, Ni, Pb, and Zn. The abaxial leaf surfaces of Psidium guajava growing at the polluted site exhibited up to a 40% decrease in stomatal pores compared to the control site. Saet's summary index (Zc) demonstrated that Mangifera indica had the highest bioaccumulation capacity. The metal accumulation index (MAI) was also evaluated to assess the overall metal accumulation capacity of the selected plants. Of the four species, Swietenia mahagoni (3.05) exhibited the highest MAI value followed by Mangifera indica (2.97). Mangifera indica and Swietenia mahagoni were also found to accumulate high concentrations of Pb and Cr in their leaves and are deemed to be good candidates to biomonitor Pb and Cr contents in ambient air.


Asunto(s)
Contaminantes Atmosféricos , Monitoreo del Ambiente , Metales Pesados , Material Particulado , Hojas de la Planta , Hojas de la Planta/química , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Metales Pesados/análisis , Material Particulado/análisis , Mangifera/química , Bangladesh , Psidium/química
3.
Environ Int ; 186: 108604, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38564945

RESUMEN

BACKGROUND: Air pollution exposure during pregnancy and childhood has been linked to executive function impairment in children, however, very few studies have assessed these two exposure periods jointly to identify susceptible periods of exposure. We sought to identify potential periods of susceptibility of nitrogen dioxide (NO2) exposure from conception to childhood on attentional function and working memory in school-aged children. METHODS: Within the Spanish INMA Project, we estimated residential daily NO2 exposures during pregnancy and up to 6 years of childhood using land use regression models (n = 1,703). We assessed attentional function at 4-6 years and 6-8 years, using the Conners Kiddie Continuous Performance Test and the Attention Network Test, respectively, and working memory at 6-8 years, using the N-back task. We used distributed lag non-linear models to assess the periods of susceptibility of each outcome, adjusting for potential confounders and correcting for multiple testing. We also stratified all models by sex. RESULTS: Higher exposure to NO2 between 1.3 and 1.6 years of age was associated with higher hit reaction time standard error (HRT-SE) (0.14 ms (95 % CI 0.05; 0.22) per 10 µg/m3 increase in NO2) and between 1.5 and 2.2 years of age with more omission errors (1.02 (95 % CI 1.01; 1.03) of the attentional function test at 4-6 years. Higher exposure to NO2 between 0.3 and 2.2 years was associated with higher HRT-SE (10.61 ms (95 % CI 3.46; 17.75) at 6-8 years only in boys. We found no associations between exposure to NO2 and working memory at 6-8 years. CONCLUSION: Our findings suggest that NO2 exposure during the first two years of life is associated with poorer attentional function in children from 4 to 8 years of age, especially in boys. These findings highlight the importance of exploring long-term effects of traffic-related air pollution exposure in older age groups.


Asunto(s)
Contaminantes Atmosféricos , Atención , Memoria a Corto Plazo , Dióxido de Nitrógeno , Humanos , Dióxido de Nitrógeno/análisis , Femenino , Memoria a Corto Plazo/efectos de los fármacos , Atención/efectos de los fármacos , Niño , Embarazo , Masculino , Preescolar , Contaminantes Atmosféricos/análisis , Efectos Tardíos de la Exposición Prenatal , Exposición a Riesgos Ambientales/estadística & datos numéricos , Contaminación del Aire/estadística & datos numéricos , Contaminación del Aire/efectos adversos , España
4.
J Hazard Mater ; 470: 134159, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38565018

RESUMEN

Household air pollution prevails in rural residences across China, yet a comprehensive nationwide comprehending of pollution levels and the attributable disease burdens remains lacking. This study conducted a systematic review focusing on elucidating the indoor concentrations of prevalent household air pollutants-specifically, PM2.5, PAHs, CO, SO2, and formaldehyde-in rural Chinese households. Subsequently, the premature deaths and economic losses attributable to household air pollution among the rural population of China were quantified through dose-response relationships and the value of statistical life. The findings reveal that rural indoor air pollution levels frequently exceed China's national standards, exhibiting notable spatial disparities. The estimated annual premature mortality attributable to household air pollution in rural China amounts to 966 thousand (95% CI: 714-1226) deaths between 2000 and 2022, representing approximately 22.2% (95% CI: 16.4%-28.1%) of total mortality among rural Chinese residents. Furthermore, the economic toll associated with these premature deaths is estimated at 486 billion CNY (95% CI: 358-616) per annum, constituting 0.92% (95% CI: 0.68%-1.16%) of China's GDP. The findings quantitatively demonstrate the substantial disease burden attributable to household air pollution in rural China, which highlights the pressing imperative for targeted, region-specific interventions to ameliorate this pressing public health concern.


Asunto(s)
Contaminación del Aire Interior , Población Rural , China/epidemiología , Humanos , Contaminación del Aire Interior/efectos adversos , Contaminación del Aire Interior/análisis , Población Rural/estadística & datos numéricos , Costo de Enfermedad , Contaminantes Atmosféricos/análisis , Mortalidad Prematura , Modelos Teóricos , Exposición a Riesgos Ambientales/efectos adversos
5.
Sci Total Environ ; 927: 171997, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38565357

RESUMEN

Marathon running significantly increases breathing volumes and, consequently, air pollution inhalation doses. This is of special concern for elite athletes who ventilate at very high rates. However, race organizers and sport governing bodies have little guidance to support events scheduling to protect runners. A key limitation is the lack of hyper-local, high temporal resolution air quality data representative of exposure along the racecourse. This work aimed to understand the air pollution exposures and dose inhaled by athletes, by means of a dynamic monitoring methodology designed for road races. Air quality monitors were deployed during three marathons, monitoring nitrogen dioxide (NO2), ozone (O3), particulate matter (PMx), air temperature, and relative humidity. One fixed monitor was installed at the Start/Finish line and one mobile monitor followed the women elite runner pack. The data from the fixed monitors, deployed prior the race, described daily air pollution trends. Mobile monitors in combination with heatmap analysis facilitated the hyper-local characterization of athletes' exposures and helped identify local hotspots (e.g., areas prone to PM resuspension) which should be preferably bypassed. The estimation of inhaled doses disaggregated by gender and ventilation showed that doses inhaled by last finishers may be equal or higher than those inhaled by first finishers for O3 and PMx, due to longer exposures as well as the increase of these pollutants over time (e.g., 58.2 ± 9.6 and 72.1 ± 23.7 µg of PM2.5 for first and last man during Rome marathon). Similarly, men received significantly higher doses than women due to their higher ventilation rate, with differences of 31-114 µg for NO2, 79-232 µg for O3, and 6-41 µg for PMx. Finally, the aggregated data obtained during the 4 week- period prior the marathon can support better race scheduling by the organizers and provide actionable information to mitigate air pollution impacts on athletes' health and performance.


Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Monitoreo del Ambiente , Material Particulado , Humanos , Contaminantes Atmosféricos/análisis , Monitoreo del Ambiente/métodos , Material Particulado/análisis , Femenino , Contaminación del Aire/estadística & datos numéricos , Masculino , Carrera/fisiología , Ozono/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Exposición por Inhalación/estadística & datos numéricos , Exposición por Inhalación/análisis , Dióxido de Nitrógeno/análisis , Atletas
6.
J Hazard Mater ; 470: 134161, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38569338

RESUMEN

BACKGROUND: Exposure to PM2.5 has been linked to neurodegenerative diseases, with limited understanding of constituent-specific contributions. OBJECTIVES: To explore the associations between long-term exposure to PM2.5 constituents and neurodegenerative diseases. METHODS: We recruited 148,274 individuals aged ≥ 60 from four cities in the Pearl River Delta region, China (2020 to 2021). We calculated twenty-year average air pollutant concentrations (PM2.5 mass, black carbon (BC), organic matter (OM), ammonium (NH4+), nitrate (NO3-) and sulfate (SO42-)) at the individuals' home addresses. Neurodegenerative diseases were determined by self-reported doctor-diagnosed Alzheimer's disease (AD) and Parkinson's disease (PD). Generalized linear mixed models were employed to explore associations between pollutants and neurodegenerative disease prevalence. RESULTS: PM2.5 and all five constituents were significantly associated with a higher prevalence of AD and PD. The observed associations generally exhibited a non-linear pattern. For example, compared with the lowest quartile, higher quartiles of BC were associated with greater odds for AD prevalence (i.e., the adjusted odds ratios were 1.81; 95% CI, 1.45-2.27; 1.78; 95% CI, 1.37-2.32; and 1.99; 95% CI, 1.54-2.57 for the second, third, and fourth quartiles, respectively). CONCLUSIONS: Long-term exposure to PM2.5 and its constituents, particularly combustion-related BC, OM, and SO42-, was significantly associated with higher prevalence of AD and PD in Chinese individuals. ENVIRONMENTAL IMPLICATION: PM2.5 is a routinely regulated mixture of multiple hazardous constituents that can lead to diverse adverse health outcomes. However, current evidence on the specific contributions of PM2.5 constituents to health effects is scarce. This study firstly investigated the association between PM2.5 constituents and neurodegenerative diseases in the moderately to highly polluted Pearl River Delta region in China, and identified hazardous constituents within PM2.5 that have significant impacts. This study provides important implications for the development of targeted PM2.5 prevention and control policies to reduce specific hazardous PM2.5 constituents.


Asunto(s)
Contaminantes Atmosféricos , Exposición a Riesgos Ambientales , Material Particulado , Material Particulado/análisis , China/epidemiología , Humanos , Anciano , Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/efectos adversos , Femenino , Masculino , Persona de Mediana Edad , Enfermedades Neurodegenerativas/epidemiología , Enfermedades Neurodegenerativas/inducido químicamente , Enfermedad de Alzheimer/epidemiología , Enfermedad de Alzheimer/inducido químicamente , Anciano de 80 o más Años , Enfermedad de Parkinson/epidemiología , Enfermedad de Parkinson/etiología , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Prevalencia
7.
Sci Total Environ ; 927: 172132, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569952

RESUMEN

This study investigated the occurrence and distribution of per- and polyfluoroalkyl substances (PFASs) in house dust samples from six regions across four continents. PFASs were detected in all indoor dust samples, with total median concentrations ranging from 17.3 to 197 ng/g. Among the thirty-one PFAS analytes, eight compounds, including emerging PFASs, exhibited high detection frequencies in house dust from all six locations. The levels of PFASs varied by region, with higher concentrations found in Adelaide (Australia), Tianjin (China), and Carbondale (United States, U.S.). Moreover, PFAS composition profiles also differed among regions. Dust from Australia and the U.S. contained high levels of 6:2 fluorotelomer phosphate ester (6:2 diPAP), while perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) were predominant in other regions. Furthermore, our results indicate that socioeconomic factors impact PFAS levels. The assessment of human exposure through dust ingestion and dermal contact indicates that toddlers may experience higher exposure levels than adults. However, the hazard quotients of PFASs for both toddlers and adults were below one, indicating significant health risks are unlikely. Our study highlights the widespread occurrence of PFASs in global indoor dust and the need for continued monitoring and regulation of these chemicals.


Asunto(s)
Contaminación del Aire Interior , Polvo , Exposición a Riesgos Ambientales , Monitoreo del Ambiente , Fluorocarburos , Polvo/análisis , Humanos , Contaminación del Aire Interior/análisis , Contaminación del Aire Interior/estadística & datos numéricos , Fluorocarburos/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/análisis , Contaminantes Atmosféricos/análisis , Caprilatos/análisis , Ácidos Alcanesulfónicos/análisis , Australia , China
8.
Sci Total Environ ; 927: 172143, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569967

RESUMEN

Atmospheric organic peroxides (POs) play a key role in the formation of O3 and secondary organic aerosol (SOA), impacting both air quality and human health. However, there still remain technical challenges in investigating the reactivity of POs in ambient aerosols due to the instability and lack of standards for POs, impeding accurate evaluation of their environmental impacts. In the present study, we conducted the first attempt to categorize and quantify POs in ambient PM2.5 through hydrolysis, which is an important transformation pathway for POs, thus revealing the reactivities of various POs. POs were generally categorized into hydrolyzable POs (HPO) and unhydrolyzable POs (UPO). HPO were further categorized into three groups: short-lifetime HPO (S-HPO), intermediate-lifetime HPO (I-HPO), and long-lifetime HPO (L-HPO). S-HPO and L-HPO are typically formed from Criegee intermediate (CI) and RO2 radical reactions, respectively. Results show that L-HPO are the most abundant HPO, indicating the dominant role of RO2 pathway in HPO formation. Despite their lower concentration compared to L-HPO, S-HPO make a major contribution to the HPO hydrolysis rate due to their faster rate constants. The hydrolysis of PM2.5 POs accounts for 19 % of the nighttime gas-phase H2O2 growth during the summer observation, constituting a noteworthy source of gas-phase H2O2 and contributing to the atmospheric oxidation capacity. Seasonal and weather conditions significantly impact the composition of POs, with HPO concentrations in summer being significantly higher than those in winter and elevated under rainy and nighttime conditions. POs are mainly composed of HPO in summer, while in winter, POs are dominated by UPO.

9.
Sci Total Environ ; 927: 172157, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38569969

RESUMEN

Particulate matter with a diameter ≤ 2.5 µm (PM2.5) is a complex mixture of particles with a variety of compositions potentially including sulfate ions (SO42-), nitrate ions (NO3-), ammonium ions (NH4+), organic and inorganic elemental carbon, and metals. Here, the temporal composition evolution of PM2.5 was analyzed to characterize its emission source, origin, and external influences. The concentrations of wintertime PM2.5 chemical compositions in Seoul, Korea during the period of 2012-2021 were classified into four representative clusters using a K-means cluster analysis method. Cluster 1 exhibited high concentrations of NO3- and NH4+ ions mainly due to the prevalence of emissions from domestic manure and fertilizer sources in the northeast. High concentrations of these two ions are conducive to generation of ammonium nitrate (NH4NO3) through atmospheric chemical reactions, resulting in relatively long-lasting high PM2.5 concentrations in Seoul. In cluster 2, high concentrations of SO42-, vanadium, and nickel were observed in frequent south-westerly winds, indicating the domestic influence of industrial facilities. Cluster 3 showed high concentrations of potassium ions and organic carbon, highlighting a pronounced external influence transported from China via prevailing westerly winds. Cluster 4 showed low PM2.5 concentrations accompanied by strong winds in warm environments, which are uncommon in winter. This study revealed that the air quality in Seoul, which was influenced by many factors, could be classified into four representative patterns. Our results provide insights into the emission sources, major influences, and responsible mechanisms of high PM2.5 concentrations in Seoul, which can help with air quality policies.

10.
Technol Cult ; 65(1): 265-291, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38661801

RESUMEN

Did the 1980s automotive standards reflect the European Economic Community's move toward a "technical democracy" or a broader democratic deficit? In the early 1980s, Europe's automotive sector faced multiple challenges: the European Commission's desire to harmonize technical standards and achieve greater European integration, intense competition between manufacturers, and environmental issues like acid rain. Debates on reducing air pollution focused on unleaded petrol and catalytic converters. Two associations representing civil society in Brussels responded to the increase in environmental concerns with a 1982 joint campaign. Despite a rich historiography on pollutant emission standards, highlighting the strategies of governments and companies, no study has dealt with the role nongovernmental organizations played. Based on public and private archives, particularly those of the European Bureau of Consumers' Unions, this article argues the new regulations did not result from the EU's consultation with civil society organizations like consumer groups but rather with the automotive industry.


Asunto(s)
Automóviles , Automóviles/historia , Automóviles/normas , Historia del Siglo XX , Europa (Continente) , Democracia , Unión Europea/historia , Política Ambiental/historia , Política Ambiental/legislación & jurisprudencia , Industrias/historia , Industrias/legislación & jurisprudencia , Industrias/normas
11.
Toxicol Ind Health ; : 7482337241247088, 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662893

RESUMEN

Exposure to heavy metals can result in various adverse health effects. Tehran is rated as one of the world's most polluted cities. Green space workers are continuously exposed to such pollutants in this city. Thus, this study aimed to estimate the health risks caused by exposure to heavy metals among green space workers. Eighty-eight workers and office personnel in two regions with different air quality levels were chosen for sampling. Air samples were collected using the NIOSH-7300 method and analyzed using an Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) instrument. The hazard quotient (HQ) and the lifetime cancer risk (LTCR) were calculated to assess carcinogenic and non-carcinogenic risk levels. The results revealed that the rank order of heavy metals was determined as Zn, Pb, Mn, Ni, Co, and Cd. Workers were subjected to higher concentrations of Ni, Pb, Zn, and Co than office personnel. Furthermore, the Cd, Co, and Zn exposure levels stood significantly higher in region 6 than in region 14. Non-carcinogenic risk levels for all participants fell within the acceptable range. Moreover, no employee had a carcinogenic risk level within the acceptable range when exposed to Cd. Also, 2.3% of individuals demonstrated Ni's acceptable carcinogenic risk level. Owing unacceptable risk levels, proper interventions are required to minimize occupational exposure to heavy metals. These interventions include optimizing shift schedules, using personal protective equipment, and conducting regular health assessments.

12.
Environ Sci Technol ; 2024 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-38662989

RESUMEN

Ultrafine particle (UFP) pollution should be controlled to reduce its effects on health. The design of control measures is limited owing to the uncertainty of source contributions in Chinese residences, where indoor UFP pollution is more severe than in Western residences. Herein, a source-specific, time-dependent UFP concentration model was developed by applying an infiltration factor model incorporating coagulation effects. A Monte Carlo framework with the UFP concentration model was employed to estimate the probabilistic distribution of source contributions in Chinese residences. The input parameter distributions were determined based on our survey and previous studies. The annually averaged indoor UFP concentration was estimated at (2.75 ± 1.71) × 104 #/cm3, ranging from 2.35 × 103 to 1.27 × 105 #/cm3 outside the kitchen, and at (5.48 ± 3.08) × 104 #/cm3, ranging from 2.90 × 103 to 1.94 × 105 #/cm3 in the kitchen. Indoor sources contributed more to indoor UFPs, accounting for 61% in the nonkitchen and 80% in the kitchen, surpassing their contribution to indoor PM2.5 in Chinese residences. Meanwhile, the indoor UFP emission contributions were higher than those in the United States, Canada, and Germany, owing to higher emissions from cooking and cigarette smoking. These results will aid in elucidating human exposure to UFPs and in designing more targeted control measures.

13.
Environ Int ; 187: 108673, 2024 Apr 19.
Artículo en Inglés | MEDLINE | ID: mdl-38663235

RESUMEN

Metro systems play a crucial role in public transportation worldwide. Given that metro stations are unique built environments with a significant volume of daily commuters, ensuring a satisfactory air quality in these spaces becomes paramount. This study involved measurements of indoor air quality (IAQ), staff satisfaction, particulate matter (PM) chemical composition, and heavy metal health risks at a typical metro station in Tianjin over two seasons. Although the air exchange rate was sufficient to maintain a CO2 concentration less than 1000 ppm, the proportion of staff reporting no sick-building symptoms decreased from 83 % in spring to 25 % in winter. An average mass concentration of PM with an aerodynamic diameter smaller than 2.5 µm (PM2.5) of 68.0 ± 42.2 µg/m3 and an average PM1 mass concentration of 51.8 ± 33.3 µg/m3 were observed on the platform in winter. PM2.5 contained more metal in winter than in spring. PM2.5 in winter contained more metal in winter than in spring. With a lower relative humidity in winter, the coefficient of friction between railway wheels and rails increased, thus increasing particle emission. The carcinogenic risk of Cr on the platform was unacceptable. Moreover, the health risks induced by Ba should be investigated. The findings indicate that PM control at metro stationss, particularly on platforms in winter, should be emphasized.

14.
Environ Pollut ; : 124023, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663508

RESUMEN

Considering that microplastics (MPs) are classified as ubiquitous pollutants, that air quality affects human health, and that people remain indoors most of the time, the need has arisen to evaluate the exposure to MPs within the suspended dust in indoor environments. With this objective, the present study carried out passive sampling to analyze the precipitation of microparticles in some indoor residential environments (2 apartments) and workplaces (an office, a pastry shop, a gift shop, and a paint shop) in Barranquilla, Colombia. The quantification and physical characterization of microparticles were carried out under a stereomicroscope, and the chemical characterization was carried out by infrared microspectroscopy (µFTIR). The highest average concentration of MPs in the apartments was found in the air-conditioned rooms (1.1×104 MPs/m2/day), and concerning the workplaces, the gift shop and the paint shop were the spaces with a higher proportion of MPs (6.0-6.1×103 MPs/m2/day), with polyesters being the main synthetic polymers, but being semi-synthetic particles the predominant among the samples. Regarding its morphology, fibers were the most abundant shape (>90%), grouping mainly in the 1000-5000 µm range, while the few fragments found were mostly grouped below 50 µm. Exposure by inhalation of MPs in adults was estimated between 1.7×102 - 1.6×103 MPs/kg/day, while by ingestion it ranged between 1.3×103 -1.2×104 MPs/kg/day. On the other hand, within our research, a significant presence of non-plastic microparticles was found, which reached up to 69% in analyzed samples, corresponding mainly to cotton and cellulose, so we suggest that these should also be included in future studies that aim to estimate potential health implications from exposure to suspended micropollutants.

15.
Sci Total Environ ; : 172591, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663597

RESUMEN

With the issue of ozone (O3) pollution having increasingly gained visibility and prominence in China, the Chinese government explored various policies to mitigate O3 pollution. In some provinces and cities, diurnal regulations of O3 precursor were implemented, such as shifting O3 precursor emission processes to nighttime and offering preferential refueling at night. However, the effectiveness of these policies remains unverified, and their impact on the O3 generation process requires further elucidation. In this study, we utilized a regional climate and air quality model (WRF-Chem, v4.5) to test three scenarios aimed at exploring the impact of diurnal industry emission variation of O3 precursors on O3 formation. Significant O3 variations were observed mainly in urban areas. Shifting volatile organic compounds (VOCs) to nighttime have slight decreased daytime O3 levels while moving nitrogen oxides (NOx) to nighttime elevates O3 levels. Simultaneously moving both to nighttime showed combined effects. Process analysis indicates that the diurnal variation in O3 was mainly attributed to chemical process and vertical mixing in urban areas, while advection becomes more important in non-urban areas, contributing to the changes in O3 and O3 precursors levels through regional transportation. Further photochemical analysis reveals that the O3 photochemical production in urban areas was affected by reduced daytime O3 precursors emissions. Specifically, decreasing VOCs lowered the daytime O3 production by reducing the ROx radicals (ROx = HO + HO˙2 + RO˙2), whereas decreasing NOx promoted the daytime O3 production by weakening ROx radical loss. Our results demonstrate that diurnal regulation of O3 precursors will disrupt the ROx radical and O3 formation in local areas, resulting in a change in O3 concentration and atmospheric oxidation capacity, which should be considered in formulating new relevant policies.

16.
Sci Total Environ ; : 172614, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663606

RESUMEN

BACKGROUND: Depression prevalence had surged within the labor force population in recent years. While a link between air pollution and depression was evident, there was a notable scarcity of research focusing on the workforce. METHODS: This nationwide longitudinal study analyzed 27,457 workers aged 15-64. We estimated monthly mean concentrations of fine particulate matter (PM2.5), its primary components, and Ozone (O3) at participants' residences using spatiotemporal models. To assess the relationship between short- (1 to 3 months) and long-term (1 to 2 years) exposure to various air pollutants and depressive symptoms and occurrences, we employed linear mixed effects models and mixed effects logistic regression. We considered potential occupational moderators, such as employment relationship, labor contracts, overtime compensation, and total annual income. RESULTS: We found significant increases in depression risks within the workforce linked to both short- and long-term air pollution exposure. A 10 µg/m3 rise in 2-year average PM2.5, black carbon (BC), and O3 concentrations correlated with increments in depressive scores of 0.009, 0.173, and 0.010, and a higher likelihood of depression prevalence by 0.5 %, 12.6 %, and 0.7 %. The impacts of air pollutants and depression were more prominent in people without labor contracts, overtime compensation, and lower total incomes. CONCLUSION: Exposures to air pollutants could increase the risk of depression in labor force population. The mitigating effects of higher income, benefits, and job security against depression underscore the need for focused mental health interventions.

17.
Sci Total Environ ; : 172732, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663609

RESUMEN

East Asian continental outflows with PM2.5, O3, and other species may determine the baseline conditions and affect the air quality in downwind areas via long-range transport (LRT). To gain insight into the impact and spatiotemporal characteristics of airborne pollutants in East Asian continental outflows, a versatile multicopter drone sounding platform was used to simultaneously observe PM2.5, O3, CO2, and meteorological variables (temperature, specific humidity, pressure, and wind vector) above the northern tip of Taiwan, Cape Fuiguei, which often encounters continental outflows during winter monsoon periods. By coordinating hourly high-spatial-resolution profiles provided by drone soundings, WRF/CMAQ model air quality predictions, HYSPLIT-simulated backward trajectories, and MERRA-2 reanalysis data, we analyzed two prominent phenomena of airborne pollutants in continental outflows to better understand their physical/chemical characteristics. First, we found that pollutants were well mixed within a sounding height of 500 m when continental outflows passed through and completely enveloped Cape Fuiguei. Eddies induced by significant fluctuations in wind speeds coupled with minimal temperature inversion and LRT facilitated vertical mixing, possibly resulting in high homogeneity of pollutants within the outflow layer. Second, the drone soundings indicated exceptionally high O3 concentrations (70-100 ppbv) but relatively low concentrations of PM2.5 (10-20 µg/m3), CO2 (420-425 ppmv), and VOCs in some air masses. The low levels of PM2.5, CO2, and VOCs ruled out photochemistry as the cause of the formation of high-level O3. Further coordination of spatiotemporal data with air mass trajectories and O3 cross sections provided by MERRA-2 suggested that the high O3 concentrations could be attributed to stratospheric intrusion and advection via continental outflows. High-level O3 concentrations persisted in the lower troposphere, even reaching the surface, suggesting that stratospheric intrusion O3 may be involved in the rising trend in O3 concentrations in parts of East Asia in recent years in addition to surface photochemical factors.

18.
Sci Total Environ ; : 172528, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663620

RESUMEN

In Transit-Oriented Development (TOD), the close integration of residential structures with community activities and traffic heightens residents' exposure to traffic-related pollutants. Despite traffic being a primary source of particulate matter (PM), the compact design of TODs, together with the impact of urban heat island (UHI), increases the likelihood of trapping emitted PM from traffic, leading to heightened exposure of TOD residents to PM. Although PM originates from two distinct sources in road traffic, exhaust and non-exhaust emissions (NEE), current legislation addressing traffic-related PM from non-exhaust emissions sources remains limited. This paper focuses on two TOD typologies in Manchester City-Manchester Piccadilly and East Didsbury-to understand the roles of TOD traffic as a PM generator and TOD place design as a PM container and trapper. The investigation aims to establish correlations between street design canyon ratios, vehicular Speed, and PM10/PM2.5, providing design guidance and effective traffic management strategies to control PM emissions within TODs. Through mapping the canyon ratio and utilising the Breezometer API for PM monitoring, the paper revealed elevated PM levels in both TOD areas, exceeding World Health Organization (WHO) recommendations, particularly for PM2.5. Correlation analysis between canyon configuration and PM2.5/PM10 highlighted the importance of considering building heights and avoiding the creation of deep canyons in TOD design to minimise the limited dispersion of PM. Leveraging UK road statistics and the PTV Group API for vehicle speed calculations, the paper studied the average speeds on the TOD roads concerning PM. Contrary to conventional assumption, the correlation analyses have revealed a noteworthy association shift between vehicular speed and PM concentrations. A positive correlation existed between speed increase and PM increases on arterial roads. However, a negative correlation emerged on main, collector, and local streets, indicating that PM levels rise for both PM10 and PM2.5 as Speed decreases. These findings challenge the traditional assumption that higher Speed leads to increased emissions, highlighting the potential impact of NEE on PM concentrations. This paper calls for thorough design considerations and traffic management strategies in TOD, especially in dense areas, considering building height, optimising traffic flow, and enhancing compromised air quality associated with vehicular emissions.

19.
Sci Total Environ ; : 172688, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663627

RESUMEN

With allergic rhinitis (AR) on the rise globally, there has been a growing focus on the role of environmental pollutants in the onset of AR. However, the potential mechanisms by how and which these pollutants exacerbate AR conditions remain unknown. This panel study of 49 patients diagnosed with AR over one year aimed to assess the individual and combined effects of short-term exposure to multiple ambient pollutants on oxidative stress, symptoms, and quality of life among patients with AR. All participants underwent four repeated assessments of health conditions and personal environmental exposures (PM2.5, O3, SO2, and NO2) over warm and cold seasons during 2017-2018. We evaluated two oxidative stress biomarkers (malondialdehyde [MDA], and superoxide dismutase [SOD]) via nasal lavage. We collected information on self-reported symptoms and quality of life using the Rhinitis Symptom Scale (SRS), the Visual Analog Scale (VAS), and the Rhinoconjunctivitis Quality of Life Questionnaire (RQLQ) through in-person interviews. Bayesian kernel machine regression (BKMR) was used to evaluate the joint effects of pollutant mixture and identify key contributors. The results revealed a significant association of the pollutant mixture when all four pollutants were at or above their median levels, with increased oxidative stress. This was evidenced by elevated MDA and reduced SOD. We found a joint detrimental effect of the pollutant mixture on AR symptoms with a strong association with increased SRS scores, but a non-significant positive association with VAS and RQLQ scores. PM2.5, O3, and SO2 presented as the potentially primary contributors to the adverse health effects associated with the pollutant mixture in Taiyuan city. Patients with AR exposed to short-term air pollutant mixture are more likely to have greater nasal symptoms and worse quality of life from increased oxidative stress and reduced antioxidant capacity. Further research is warranted to better elucidate the underlying mechanisms.

20.
Environ Res ; : 119008, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38663670

RESUMEN

Although desert dust promotes morbidity and mortality, it is exempt from regulations. Its health effects have been related to its inflammatory properties, which can vary between source regions. It remains unclear which constituents cause this variability. Moreover, whether long-range transported desert dust potentiates the hazardousness of local particulate matter (PM) is still unresolved. We aimed to assess the influence of long-range transported desert dust on the inflammatory potency of PM2.5 and PM10 collected in Cape Verde and to examine associated constituents. During a reference period and two Saharan dust events, 63 PM2.5 and PM10 samples were collected at four sampling stations. The content of water-soluble ions, elements, and organic and elemental carbon was measured in all samples and endotoxins in PM10 samples. The PM-induced release of inflammatory cytokines from differentiated THP-1 macrophages was evaluated. The association of interleukin (IL)-1ß release with PM composition was assessed using principal component (PC) regressions. PM2.5 from both dust events and PM10 from one event caused higher IL-1ß release than PM from the reference period. PC regressions indicated an inverse relation of IL-1ß release with sea spray ions in both size fractions and organic and elemental carbon in PM2.5. The PC with the higher regression coefficient suggested that iron and manganese may contribute to PM2.5-induced IL-1ß release. Only during the reference period, endotoxin content strongly differed between sampling stations and correlated with inflammatory potency. Our results demonstrate that long-range transported desert dust amplifies the hazardousness of local air pollution and suggest that, in PM2.5, iron and manganese may be important. Our data indicate that endotoxins are contained in local and long-range transported PM10 but only explain the variability in inflammatory potency of local PM10. The increasing inflammatory potency of respirable and inhalable PM from desert dust events warrants regulatory measures and risk mitigation strategies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...